

The big picture

- Inference
 - use a small dataset to say something about the world
 - Design based:
 - probability based sampling and inference
 - Estimate and correct for each TSE source
 - Weeks 3-~8
 - Model-based
 - Big data, any data?
 - Model all the data errors, but how?
 - Week 9 -~14

Take home exercise of week 2

- Deck of 52 cards
 - Spades, diamonds, clubs, hearts
 - Each suit: 13 cards
- How many cards of Spades?
 - When sample of size 10/40
 - When drawing with/without replacement
- Your results

Simple Random Sampling

- Every element on the sampling frame has an equal, non-zero probability of being selected into sample
 - Element: individuals/households/companies
 - Population: collection of elements
- Why/when use a SRS?

Simple random sampling: when?

- There is a sampling frame consisting of population elements
 - Bonus Q: what to do if we have no frame?
- No need for clustering
 - Depends on mode
 - Web/mail vs. face-to-face/telephone
- No need for stratification
 - Little is known about people on sampling frame
 - Known characteristics do not correlate with dependent variables

The sampling distribution

- See file "simulation_cards_srs.R"
- Idea:
 - Every sample will have a slightly different estimate
 - What matters is whether [the method] gives you a consistent estimate of the population in the long run
 - Simple Random Sampling is an asymptoticially unbiased estimator
- We can repeat the experiment 10.000 times!

Sampling with/without replacement

- When does it not matter?
 - Selecting 1 out of 52 cards

Sampling without replacement (SRSWOR)

- When does with/without not matter?
 - Selecting 1 out of 52 cards
- What happens when we select 2 cards WOR
 - Card 1:
 - 13/52 chance for Spades
 - Card 2:
 - 75% chance for 13/51
 - 25% chance for 12/51
- Expected value for 2 cards:
 - -0.25 + (.75*13/51+.25*12/51)=
 - -0.25 + .1912 + .0588 = .50 Spades

Sampling with replacement (SRSWR)

- When does it not matter?
 - Selecting 1 out of 52 cards
- What happens when we select 2 cards WR
 - Card 1:
 - 13/52 chance for Spades
 - Card 2:
 - 13/52
- Expected value for 2 cards:
 - -0.25 + 0.25 = 0.50
- SRS(WR) and SRSWOR are both unbiased estimators of population mean
 - Also of mode/median (the beauty of the central limit theorem)
 - We assume no other errors (coverage, nonresponse)

what's the fuss – variance of estimator

- Extreme case: select 52 of 52 cards
 - Expected value: 13 Spades in both
 - Variance SRSWOR estimator: 0
 - Repeating it a 1000 times -> always 13 spades
 - This method needs correction -> without it is biased
 - Variance SRS(WR) estimator: 9.48
 - Repeating it a 1000 times -> variation
- Difference in variance is larger when a larger proportion of population is sampled

Estimators

- If we repeat a study n times (say 10000 times), we can investigate:
 - Bias: is the mean/variance/etc. correctly estimated in the long run?
 - Do we get p=.25 for spades on average?
 - Variance of estimator (precision)
 - How much variation is there in the mean?
 - In reality we take just 1 sample!
 - Consistent: does it work across all situations?
 - Different kinds of data
- Mean Square Error = bias² + variance
- A good estimator often minimizes MSE

Computation SRSWOR (without)

1. Mean under Simple Random Sampling

$$\overline{y} = \frac{1}{n} \sum y_i$$

2. Variance of the SRS mean estimate

n = sample size, s^2 = variance in sample

How do we compute se in SRSWOR?

1. Mean under Simple Random Sampling

$$\bar{y} = \frac{1}{n} \sum y_i$$

2. Variance of the SRS mean estimate

$$var(\bar{y}) = (1-f)\frac{s^2}{n}$$

 $s^2 = \frac{1}{n-1}\sum (y_i - \bar{y})^2$

3. Standard error of the mean

Se
$$(\bar{y}) = \sqrt{var(\bar{y})} = \sqrt{1 - f} \frac{s}{\sqrt{n}}$$

Se = standard error, n = sample size, s=standard deviation in sample

Intermezzo 1: Fpc in practice

- Fpc = (1-f) = (1-n/N) or (N-n)/N
 - In SRSWOR, correction
- fpc approaches 1 when n/N small
 - when sample of 1.000 people in the Netherlands is drawn:
 - Fpc = 1 1.000/17.000.000 = 1 0.00058 = 0.99942
- When sampling fraction n/N < .05, ignore FPC
 - We assume a infinite population

Intermezzo 2: (n-1) or n?

- Bessel's correction for variance: Divide by n-1 when you calculate variances (or se) using sample data
- Why?

- Ideal:
$$\sum (y_i - \mu)^2$$
 $s^2 = \frac{1}{n} \sum (y_i - \mu)^2$
- In practice: $\sum (y_i - \overline{y})^2$ $s^2 = \frac{1}{n-1} \sum (y_i - \overline{y})^2$

- In practice:
$$\sum (y_i - \overline{y})^2$$
 $s^2 = \frac{1}{n-1} \sum (y_i - \overline{y})^2$

- The sample mean is always a bit biased
- the sum of squares is smaller than it should be
- Divide by n-1 in denominator to adjust

```
\mu = population mean
```

Why smaller?

- Sum of squares is too small when using a sample
- Why? Here is what we would like

-
$$\sum (y_i - \overline{y}) + (\overline{y} - \mu)^2$$

- Divide by n-1 in denominator to adjust
 - dividing by n-1 works for variance, but biased for s! (sqrt(s²))
 - When you would resample many times
 - Not the smallest MSE with many types of data
 - often sqrt(1.5) used instead of n-1 in larger samples
- Just remember: use n-1 for variance estimate of mean
 - Want to know more? See "bessels correction.r"

A real example

- I would like to do a survey among all students at Utrecht University
 - Population = 20.000
 - RQ: Interested in differences in grades and student happiness between programmes
 - approx. 49 BA programmes and 150 MA programmes
 - Limited budget (cannot do census) for about n=1000
- 5 minutes: how do we do this?

Example: possible solution

- Cheap: e-mail
 - Sample all students? A census
- Can do complicated stratification to ensure enough students from every programme
 - 200 + programmes...
- Simple random sampling (SRS)
 - Risk of small n for some programmes.
 - Let's work out how SRS works
 - And talk about sample size

Why is standard error useful?

- Gives indication of both
 - Uncertainty due to sampling error
 - Uncertainty in estimation (e.g. ML estimation)
- Used to construct confidence Interval:

$$[\overline{y} - Z_{\alpha/2}SE(\overline{y}), \overline{y} + Z_{\alpha/2}SE(\overline{y})]$$

s.e. and confidence intervals

Margin of error

Coefficient of variation

Short exercise

- What is mean grade of students at Utrecht University (1-10-scale)
- Population = 20.000 students
- Best guesses for means and Variance?
 - Mean: 7.0variance: 4
- Take a sample of n=200 (don't worry about fpc (as n/N = .01))
- What is the standard error?
- What is the margin of error?
- What is coefficient of variation?

Solution:

1. standard error:

$$se = \sqrt{1 - f} \frac{s}{\sqrt{n}}$$

$$se = \sqrt{1 - f} \frac{2}{\sqrt{200}} = .14$$

2. Margin of error

$$MoE = 1.96* s.e = .27$$

3. Coefficient of variation

$$Cv = \frac{se}{\bar{v}} = \frac{.14}{\bar{7}} = .02$$
 (2% of the mean)

What if we need to be more precise?

- How can confidence interval change?
 - Variance in sample/population
 - Required precision of Confidence Interval
 - Alpha
 - Size of sample (n)
- What if:
 - n=400, alpha = .05

Solution:

- n=400
- $se = \sqrt{1-f} \frac{2}{\sqrt{400}} = .1$
- Or .1 * $\sqrt{1 \frac{400}{20.000}}$ = .1 *.98 = .098 if we include fpc (n/N=.02)
 - Standard error becomes $\frac{.14}{.1}$ = 1.4 times more precise (smaller) when we double the sample size

MoE and sample size

Margin of Sampling Error at Specified Proportions Assumptions: Simple random sampling with 95% confidence intervals

Proportion - 1% - 5% - 10% - 25% - 50% 10.0 7.5 Absolute MoSE [%] 2.5 1000 2000 3000 Sample Size

Break

What if we need to be more precise?

- How can confidence interval change?
 - Variance in sample/population
 - Required precision of Confidence Interval
 - Alpha
 - Size of sample (n)
- What if:
 - n=400, alpha = .005 (multiple testing issue from MSSBBS02)

Solution

- Alpha = .005
 - Confidence interval: +- 2.58 se
 - Confidence interval becomes $\frac{2.58*2}{1.96*2}$ = 1.32 times wider
 - Because we lower alpha, we get a wider CI
 - Increase precision -> choose a larger value for alpha

How large should my sample be?

- #1. question in statistical consultation
- Depends on:
 - Statistic of interest (here: mean)
 - Variance in sample/population
 - Required precision of Confidence Interval
 - Alpha, standard error
 - Size of sample/population (n/N)
 - Often, we want to test for size of difference between groups (see take home exercise) and therefore Power also plays a role

α ? Power (β)?

- Type I error (α) is to reject H0 while H0 is true
- Type II error (β) is to accept H0 while H1 is true

How large should my sample be?

- $\alpha = .05$
- Standard error?
 - Estimate relative error instead
 - Coefficient of variation

$$cv(\overline{y}) = \frac{se(\overline{y})}{\overline{y}}$$

Class exercise

- What is mean grade of students at Utrecht University (1-10-scale) under SRS?
 - Population = 20.000 students
- Best guesses for means and Variance?
 - Mean: 7.0
 - variance: 4
- I want to be precise: s.e. restricted to 2% (cv=.02)
 - Implies CI of [-1.96 *2 ; 1.96*2] = 7.84%, and
 - Margin of error [1.96*2] = 3.92% of mean
- Alpha = .05
- How large should sample be?

1.
$$cv(\overline{y}) = \frac{se(\overline{y})}{\overline{y}}$$
 2. $se(\overline{y}_0) = \sqrt{var(\overline{y}_0)} = \sqrt{(1-f)}\frac{s}{\sqrt{n}}$

Solution:

1. standard error:
$$cv(\overline{y}) = \frac{se(\overline{y})}{\overline{y}}$$

.02 = x / 7 = .14/7

2. Compute n under SRSWOR:

$$se(\overline{y}_0) = \sqrt{var(\overline{y}_0)} = \sqrt{(1-f)} \frac{s}{\sqrt{n}}$$

.14 = sqrt(1-f)* (2/sqrt(n))

$$2/.14 = sqrt(n)/sqrt(1-f) = 14.286^2/sqrt(1-f)$$
.

n=204.08 (or 205)

- We may ignore fpc because sampling fraction <5%</p>
- Or: f = 1-(205/20.000) = 1-.01 = .99
- $-2/.14/(sqrt(.99) = sqrt(n) = 14.43^2 = 206.14 (or 207)$

Estimator

- Equal selection probabilities (SRS):
 - Unbiased estimator of mean, variance in population
 - Can use sample size to manipulate precision
 - Also of regression (OLS), other estimates
 - So, with an SRS, you can use the data as is
 - When there are no coverage and nonresponse errors
- Unequal selection probabilities
 - You can't use the data as is...

Why unequal probabilities?

- Because you want to make your design cheaper or more efficient
 - Stratification and clustering
 - Next time
- Because there are issues with your list
 - Why?

Coverage and sampling issues in SRS

- Your list may have double entries
 - E.g. students enrolled in multiple programmes
 - Sometimes you don't know in advance
 - E.g. multiple telephone numbers in RDD designs
- You have a list of clusters, but want individuals
 - Addresses -> individuals
 - How many people live at this address?
- Problem -> take unequal selection probabilities into account

What to do:

- 1. Estimate individual selection probabilities: π_i
- 2. Weight cases by the inverse of their selection probabilities:

$$w_i = \frac{1}{\pi_i}$$

3. In computing statistics, every case is weighted in analysis:

- e.g.
$$\overline{y}_w = \frac{\sum w_i y_i}{\sum w_i}$$

Weights

- In SRS, $w_i = 1$ for all.
- Sampling or design weights correct for unequal selection probabilities in sampling
 - Correction for bias in sampling
 - Nonresponse weights also exist (week 9)
- Point estimates are weighted
 - Means, B,
- Variances more complex
 - Next week

Weights

Next week

- Take home exercise week 3
 - Draw SRS samples (once more)
 - Work with Svydesign in R
 - Work with design weights
 - Compute sample sizes (power analysis)

Next time:

- We will discuss sampling designs with explicit unequal selection probabilities (stratification and clustering)
- Read Stuart