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Course Overview



Why deal with missing data?

▶ Missing data are everywhere
▶ Missing data are the heart of statistics
▶ Ad-hoc fixes do not (always) work
▶ Multiple imputation is broadly applicable, yields correct

statistical inferences
▶ Goal: get you comfortable with use of mice for imputing

survey data



Course materials

▶ Osiris
▶ Content
▶ Exercises and practicals at <www.gerkovink.com/sda>

https://osiris.uu.nl/osiris_student_uuprd/OnderwijsCatalogusSelect.do?selectie=cursus&collegejaar=2022&cursus=201300001&taal=nl
https://uu.blackboard.com/webapps/blackboard/execute/announcement?method=search&context=course&course_id=_142028_1&handle=cp_announcements&mode=cpview


Reading materials

▶ Van Buuren, S. and Groothuis-Oudshoorn, C.G.M. (2011).
mice: Multivariate Imputation by Chained Equations in R.
Journal of Statistical Software, 45(3), 1–67.
https://www.jstatsoft.org/article/view/v045i03

▶ Van Buuren, S. (2018). Flexible Imputation of Missing Data.
Second Edition. Chapman & Hall/CRC, Boca Raton, FL.
https://stefvanbuuren.name/fimd

https://www.jstatsoft.org/article/view/v045i03
https://stefvanbuuren.name/fimd




mice software

1. CRAN: mice 3.16.0

▶ install.packages("mice")

2. Github: mice 3.16.8

▶ devtools::install_github("amices/mice")

https://CRAN.R-project.org/package=mice
https://github.com/amices/mice


Schedule

Slot Time What Topic

A 16.30-17.30 L Missing data, ad-hoc methods
17.30-17.45 COFFEE/TEA

B 17.45-18.15 L Multiple imputation, univariate
C 18.15-19.00 P Three vignettes



Nature and impact of missing data



Definition of missing values

▶ Missing values are those values that are not observed
▶ Values do exist in theory, but we are unable to see them



Challenger space shuttle - 28 Jan 1986 - 7 deaths



Challenger space shuttle - 28 Jan 1986 - 7 deaths

▶ What made the Challenger crash?





What is dark data?

Dark data are concealed from us, and that very fact means
we are at risk of misunderstanding, of drawing incorrect
conclusions, and of making poor decisions.



Dark data types (1/2)

▶ DD-Type 1: Data We Know Are Missing
▶ DD-Type 2: Data We Don’t Know are Missing
▶ DD-Type 3: Choosing Just Some Cases
▶ DD-Type 4: Self-Selection
▶ DD-Type 5: Missing What Matters
▶ DD-Type 6: Data Which Might Have Been
▶ DD-Type 7: Changes with Time
▶ DD-Type 8: Definitions of Data
▶ DD-Type 9: Summaries of Data
▶ DD-Type 10: Measurement Error and Uncertainty



Dark data types (2/2)

▶ DD-Type 11: Feedback and Gaming
▶ DD-Type 12: Information Asymmetry
▶ DD-Type 13: Intentionally Darkened Data
▶ DD-Type 14: Fabricated and Synthetic Data
▶ DD-Type 15: Extrapolating beyond Your Data



Definition of missing values

▶ Missing values are those values that are not observed
▶ Values do exist in theory, but we are unable to see them
▶ One possible reasons is non-response



Types of non-response

Two types of non-response

▶ unit non-response: no observed response at all for a case
▶ item non-response: some, but not all, responses are missing

for a case

You can classify missing values in three groups:

▶ Missing values that should have been observed (unintentional)
▶ Missing values that should not have been observed

(intentional)
▶ Missing values whose true value can be deduced from the

observed data (deductive missings)



Intentionality vs Response



Some confusing terminology

▶ Complete data = Observed data + Unobserved data
▶ Incomplete data = Observed data
▶ Missing data = Unobserved data
▶ Complete cases = subset of rows in the observed data without

missing values
▶ Complete variables = subset of columns in the observed data

without missing values



Complete data



Incomplete data = observed data



Missing data = unobserved data



Why values can be missing

Missingness can occur for a lot of reasons. For example

▶ death, dropout, refusal
▶ routing, experimental design
▶ join, merge, bind
▶ too far away, too small to observe
▶ power failure, budget exhausted, bad luck



Consequences of missing data

▶ Cannot calculate, not even the mean
▶ Less information than planned
▶ Enough statistical power?
▶ Different analyses, different n’s
▶ Systematic biases in the analysis
▶ Appropriate confidence interval, P-values?

Missing data can severely complicate interpretation and analysis



Strategies to deal with missing data

▶ Prevention
▶ Ad-hoc methods, e.g., single imputation, complete cases
▶ Weighting methods
▶ Likelihood methods, EM-algorithm
▶ Multiple imputation



Ad-hoc techniques



Listwise deletion, complete-case analysis

▶ Analyze only the complete records
▶ Advantages

▶ Simple (default in most software)
▶ Unbiased under MCAR
▶ Conservative standard errors, significance levels
▶ Two special properties in regression



Listwise deletion, complete-case analysis

▶ Disadvantages
▶ Wasteful
▶ May not be possible
▶ Larger standard errors
▶ Biased under MAR, even for simple statistics like the mean
▶ Inconsistencies in reporting



Mean imputation

▶ Replace the missing values by the mean of the observed data
▶ Advantages

▶ Simple
▶ Unbiased for the mean, under MCAR



Mean imputation
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Mean imputation

▶ Disadvantages
▶ Disturbs the distribution
▶ Underestimates the variance
▶ Biases correlations to zero
▶ Biased under MAR

▶ AVOID (unless you know what you are doing)



Regression imputation

▶ Also known as prediction
▶ Fit model for Y obs under listwise deletion
▶ Predict Y mis for records with missing Y ’s
▶ Replace missing values by prediction

▶ Advantages
▶ Under MAR, unbiased estimates of regression coefficients
▶ Good approximation to the (unknown) true data if explained

variance is high
▶ Favourite among data scientists and machine learners



Regression imputation
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Regression imputation

▶ Disadvantages
▶ Artificially increases correlations
▶ Systematically underestimates the variance
▶ Too optimistic P-values and too short confidence intervals

▶ AVOID. Harmful to statistical inference



Stochastic regression imputation

▶ Like regression imputation, but adds appropriate noise to the
predictions to reflect uncertainty

▶ Advantages
▶ Preserves the distribution of Y obs

▶ Preserves the correlation between Y and X in the imputed
data



Stochastic regression imputation
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Stochastic regression imputation

▶ Disadvantages
▶ Symmetric and constant error restrictive
▶ Single imputation: does not take uncertainty imputed data

into account, and incorrectly treats them as real
▶ Not so simple anymore



Overview of assumptions needed

Unbiased Standard Error
Mean Reg Weight Correlation

Listwise MCAR MCAR MCAR Too large
Pairwise MCAR MCAR MCAR Complicated
Mean MCAR – – Too small
Regression MAR MAR – Too small
Stochastic MAR MAR MAR Too small
LOCF – – – Too small
Indicator – – – Too small



Multiple imputation



Multiple imputation



Acceptance of multiple imputation
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Estimand

▶ Q is a quantity of scientific interest in the population.
▶ Q can be a vector of population means, population regression

weights, population variances, and so on.
▶ Q may not depend on the particular sample, thus Q cannot

be a standard error, sample mean, p-value, and so on.



Goal of multiple imputation

▶ Estimate Q by Q̂ or Q̄ accompanied by a valid estimate of its
uncertainty.

▶ What is the difference between Q̂ or Q̄?
▶ Q̂ and Q̄ both estimate Q
▶ Q̂ accounts for the sampling uncertainty
▶ Q̄ accounts for the sampling and missing data uncertainty



Pooled estimate Q̄

Q̂ℓ is the estimate of the ℓ-th repeated imputation

Q̂ℓ contains k parameters, represented as a k × 1 column vector

Pooled estimate Q̄ is simply the average

Q̄ = 1
m

m∑
ℓ=1

Q̂ℓ



Within-imputation variance

Average of the complete-data variances as

Ū = 1
m

m∑
ℓ=1

Ūℓ,

where Ūℓ is the variance-covariance matrix of Q̂ℓ obtained for the
ℓ-th imputation

Ūℓ is the variance is the estimate, not the variance in the data

Within-imputation variance is large if the sample is small



Between-imputation variance

Variance between the m complete-data estimates is given by

B = 1
m − 1

m∑
ℓ=1

(Q̂ℓ − Q̄)(Q̂ℓ − Q̄)′,

where Q̄ is the pooled estimate.

The between-imputation variance is large there many missing data



Total variance

The total variance is not simply T = Ū + B

The correct formula is

T = Ū + B + B/m

= Ū +
(

1 + 1
m

)
B (1)

for the total variance of Q̄m, and hence of (Q − Q̄) if Q̄ is unbiased

The term B/m is the simulation error



Three sources of variation

In summary, the total variance T stems from three sources:

1. Ū, the variance caused by the fact that we are taking a
sample rather than the entire population. This is the
conventional statistical measure of variability;

2. B, the extra variance caused by the fact that there are missing
values in the sample;

3. B/m, the extra simulation variance caused by the fact that
Q̄m itself is based on finite m.



Variance ratio’s (1)

Proportion of the variation attributable to the missing data

λ = B + B/m
T

Relative increase in variance due to nonresponse

r = B + B/m
Ū

These are related by r = λ/(1 − λ).



Variance ratio’s (2)

Fraction of information about Q missing due to nonresponse

γ = r + 2/(ν + 3)
1 + r

This measure needs an estimate of the degrees of freedom ν (c.f.
section 2.3.6)

Relation between γ and λ

γ = ν + 1
ν + 3λ + 2

ν + 3 .

The literature often confuses γ and λ.



Statistical inference for Q̄ (1)

The 100(1 − α)% confidence interval of a Q̄ is calculated as

Q̄ ± t(ν,1−α/2)
√

T ,

where t(ν,1−α/2) is the quantile corresponding to probability
1 − α/2 of tν .

For example, use t(10, 0.975) = 2.23 for the 95% confidence
interval for ν = 10.



Statistical inference for Q̄ (2)

Suppose we test the null hypothesis Q = Q0 for some specified
value Q0. We can find the P-value of the test as the probability

Ps = Pr
[
F1,ν >

(Q0 − Q̄)2

T

]

where F1,ν is an F distribution with 1 and ν degrees of freedom.



How large should m be?

Classic advice: m = 3, 5, 10. More recently: set m higher: 20–100.

Some advice:

▶ Use m = 5 or m = 10 if the fraction of missing information is
low, γ < 0.2.

▶ Develop your model with m = 5. Do final run with m equal to
percentage of incomplete cases.



Multiple imputation in mice

incomplete data imputed data analysis results pooled results

data frame mids mira mipo

mice() with() pool()



Inspect the data

library("mice")
head(nhanes)

## age bmi hyp chl
## 1 1 NA NA NA
## 2 2 22.7 1 187
## 3 1 NA 1 187
## 4 3 NA NA NA
## 5 1 20.4 1 113
## 6 3 NA NA 184



Inspect missing data pattern

md.pattern(nhanes)
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27

## age hyp bmi chl
## 13 1 1 1 1 0
## 3 1 1 1 0 1
## 1 1 1 0 1 1
## 1 1 0 0 1 2
## 7 1 0 0 0 3
## 0 8 9 10 27



Multiply impute the data

imp <- mice(nhanes, print = FALSE, maxit=10, seed = 24415)



Inspect the trace lines for convergence

Iteration
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Stripplot of observed and imputed data

stripplot(imp, pch = 20, cex = 1.2)



Stripplot of observed and imputed data
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Fit the complete-data model

fit <- with(imp, lm(bmi ~ age))
est <- pool(fit)
summary(est)

## term estimate std.error statistic df p.value
## 1 (Intercept) 30.01 2.44 12.32 8.01 1.73e-06
## 2 age -1.94 1.12 -1.73 11.92 1.10e-01



Generating imputations, univariate



Relation between temperature and gas consumption
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We delete gas consumption of observation 47
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Predict imputed value from regression line
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Predicted value + noise
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Predicted value + noise + parameter uncertainty
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Imputation based on two predictors
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Drawing from the observed data
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Predictive mean matching
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PMM: Add two regression lines
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PMM: Predicted given 5◦,C, ‘after insulation’
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PMM: Define a matching range ŷ ± δ
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PMM: Select potential donors
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PMM: Bayesian PMM: Draw a line
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PMM: Define a matching range ŷ ± δ
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PMM: Select potential donors
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Imputation of a binary variable

▶ Logistic regression

Pr(yi = 1|Xi , β) = exp(Xiβ)
1 + exp(Xiβ)



Fit logistic model
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Draw parameter estimate
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Read off the probability
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Impute ordered categorical variable

▶ K ordered categories k = 1, . . . , K
▶ ordered logit model, or
▶ proportional odds model

Pr(yi = k|Xi , β) = exp(τk + Xiβ)∑K
k=1 exp(τk + Xiβ)

▶



Fit ordered logit model
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Read off the probability
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Built-in imputation functions

https://amices.org/mice/reference/index.html

https://amices.org/mice/reference/index.html


Next week

▶ Aproaches to multivariate missing data
▶ MICE algorithm
▶ Pooling
▶ Workflows
▶ Specification of imputation model
▶ Multilevel data
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